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The variances of the MINQU estimator® riance components

for the random effects model Yij =y + ui + eij depend on the values

of a priori weights needed for the estimators. The MINQUE have minimum
variance in the class of unbiased, quadratic estimators when (i) ui

and sij are normally distributed and (ii) the ratio of the a priori ¥
weights is equal to the ratio of the variances of o, and eij' This

paper shows that for the a priori weights in a neighborhood of the

ratio of the variance components the variances of the MINQUE are quite
insensitive. That is, the variances deviate little from the optimum
variances.

For comparison, the variances of the corresponding Henderson
Method I or analysis of variance type estimators of the variance com-
ponents are also computed. Recommendations can be made as to when to
use which type of estimator and how to specify the a prioriweights if

a MINQU estimator is used.
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Consider the one way random effect model with ¢ levels of the

random factor and r

The model

Y
nxl

where n =

nx%

is the design matrix/a v N(Q,O:I), €N N(Q.oel), and the elements of a ok e,
i
and € are mutuaily independent. Note that ¥ v N(ul ,V) where V = s Bu
2 2 2_- - i
, : ‘:'"...
oV, + 0 I and Vv, = U, U}. RN
R .
uy SrreraiasesengBettee. . .
The minimum norm quadratic unbiased estimator (MINQUE), denoted STBETII/BVA 1
~y S
o i
~ a B
o= 1. ' :
22 A
e —— e

of o: and o: is given as the solution of Sg = u (Rao [1972]) where the matrix

S and the vector u will be defined below. Both S and u depend on the matrix

R =

where V* = 'av

I. Notation ///////

i observations in the ith level, i =1, 2, ..., %.

can be written as

+ +
L
L ri. y is an unknown mean, ln is an n x 2 vector of ones,
i=]1
r oy
1, ¢
1
e
2

=X

v lg
n

1

ve T -

a've 1y |

+wlilI,J is an (n x n) matrix of ones and,w_ and w_ are
1 e n a e

a priori weights which are needed for the estimator (actually, the estimator

w

depends on the a priori weights only through the ratio ;2-).




The problem considered here is that when a and € are normally dis-
tributed the MINQU estimators have minimum variance in the class of un-

biased quadratic estimators only when the ratio of the a_priori weights

w o2
equals the ratio of the variance components, i.e. EV e At first
e g
e

glance, it would seem that this is a very severe requirement to assure

a desired optimal property of the unbia.®d quadratic estimator; however,

i 3 2 2 : A
it was found that the variances of oa and o remaéned close to the mini-

v e oZ
mum variances for ~ g in a large neighborhood of 9 for several values of
e o
e

the parameters and several degrees of unbalancedness of thg design. This
is discussed in detail in section III.

For comparison, the variances of the Henderson Method I estimators
of oz and o: were computed. These quadratic, unbiased estimators are
easily calculated and it is of interest to note the magnitude of their
variances relative to the minimum variances attainable in the class of
unbiased, quadratic estimators as well as the variances of the MINQU
estimators which depend on the rétio :5 P

e
The Henderson Method I estimators of o: and 02 are given as (Searle

[1968])
~2 & n{(n-2)+SSA - (L~1)*SSE)
%a 2 *
(n-2)(n - ¢ ri)
i=1
and
~2 _ _SSE
b (n=2)

respectively where SSA and SSE will be defined below.
It is important to note that SSA and SSE, and hence the variances of

o: and o:. do not depend on a priori weights as do the MINQU estimators.




II. Variances
For the random effects model described above, the S matrix, u vector,

SSA, and SSE are defined as follows:

s = [s,.]
2x2 i3
where Sll = tr(RVlRVI), 512 = 821 = tr(RVlR), and 522 = tr (RR),

u
e ul
2x1 2

Z'RVIR! and u2 = !'RR!.

where ul

' =1 c_!'_ = y!
(Uju,) U Jn]Z Y an'

= L]
SRS Wity e

and
-1
= L - b ' = g
SSE = Y'[I-U; (U1U,) "UjTY = ¥'Q Y.
The MINQU estimators of oz and oz are then given by

=3 - Tyt

oa 2
512751152

and

o W e Bt

oe 2
512751152

respectively.

The variances of ai and o: can now be found as follows:

~2 2.2 2
var(oa) =k {slzvar(u2)+szzvar(u1)-28 S cov(ul,uz)}

22712

~2 2, .2 2
var(o,) = k (slzvar(u1)+sllvar(uz)-zslzsllcov(ul,uz))
vwhere k = (8:2-811322)-1. Using results as found in Searle ([1971] pg. 55)




and noting that 1'R = 0', the following quantities can be obtained:
var(ul) = 2tr(RV1RVRV1RV),

var(uz) = 2tr (RRVRRV) and

cov(ul.uz) = 2tr(RVlRVRRV)

where V is the variance of Y as defined above. Hence, the variances of

the MINQU estimators can be written

~2 2.3 2. .2 2
var(oa) 2k {Slztr[(RRV) 1+522tr[(kv1RV) 1-28 tr[RVlRVRRV]}

22512

and

2

~2 2, 2 2
var(oe) = 2k {Slztr[(RVlRV) ]+s1

ltr[(RRV)zl-ZS tr[RVlRVRRV]}.

12511

~

- 2 :
The variances of o; and oe, the Henderson Method I estimators, can

be found as above. Noting that the quadratic forms SSA and SSE are in-

~

dependent, the variances of aa and o: can be written as follows:

e n2 2 2
var(o ) = ) { (n-2) “var (ssA)+ (2-1) “var (SSE) }
i ¥.-2 3.3
(n=2) (n'- I ri)
i=1
and
~2
var(o ) = {var (SSE)}.

(n-2)
Again using results as found in Searle [(1971) pg. 55] and noting that

l'Q. = l'Q. = 0', then

var (SsA) = 2tt(QaVQaV)

var (SSE) = 2tr (Q’VQQV) s

Therefore, the variances of the Henderson Method I estimators can be written




- 2
var(oz) = 2n
a

2 2
2 { (n-2) tr(Q_VQ V)+(2-1) tr(QeVQeV)}

(n-2)2(n2- I r?)2
; i
i=1
and
~2 2
var(o ) = 3

{tr(Q vo v)}.
(n=2) il

III. Results
The measure of sensitivity of the variance of the estimators is

defined as follows:

; . 2 ; :
variance of the estimator of oa being considered

Y =
a sl ; : P ” g
minimum variance in class of quadratic, unbiased estimators

The measure used does not involve the variance of the estimator of 02
being considered since for all cases investigated the variance of 02

-~

remained stable relative to the variance of oz for various parameters,

a priori weights, and designs. Note that ) > 1 and that the decimal
portion of ; A times 100 is the percent by which the variance of the
estimator of oi being considered exceeds the minimum variance for a qua-
dratic, unbiased estimator. Also, 5 depends on the variance parameters

a2

only through the ratio —% .
(o]

In order to compareeresults obtained across different sample sizes
and different number of levels of the random effect, a measure of un-

balancedness is defined. Using an extension of a measure used by Low [1976],

S max D = [)D
max

s ay e s s i
where D= [ (r,~r) =-min] I (r,-r)°}, r = =

i=1 i i i L
maximum value D can attain. Designs are then chosen for comparison that

r, =2 , and D is the
L max

have approximately the same % max D. Note that when the design is balanced




-

as possible then % max D 0 and that when the design is as unbalanced

1.

as possible then % max D

The study took many design configurations into consideration. That

(o} w
is, the behavior of i o for values of —% ' ;2 » n, £, and r, (i=1,2,...%)
(o] e

was studied. Designs were considered Shere more degrees of freedom were
available to estimate oz than OZ; that is, the majority of the r, = 1.
The results reported here, however, are only for the case when there are
more degrees of freedom to estimate 02 than oz. Attention is devoted to
this type of design for two reasons. First, this seems to be the case

in the majority of physical situations. Second, there is a lack of con-
sistency and trends when more degrees of freedom are available to estimate
the random effect variance than the error variance. The results which
are tabulated and graphed below are representative of the many design

configurations considered.
[Insert Tables and Figures]

IV. Conclusions

When considering designs for which there are more degrees of freedom
to estimate o: than o: and for which the unbalancedness is not extreme,
recommendations can be made. As can be seen from tables 1 and 2 the
MINQU estimator becomes increasingly sensitive to the a priori weights
as the degree of unbalancedness increases. Also, tables 1 and 2 as well
as figures 1 and 2 illustrate that as the number of levels of the random
factor, L, increases the more sensitive the MINWU estimatof becomes to
the ratio of the weights, ;& . Again looking at tables 1 and 2, graphs
1 and 2, and excepting the :ase when the variance ratio is‘smallest

it is seen that the MINQU estimator is more sensitive to the a priori

o
weights which underoltimste —g— than it is to the a priori weights which in
o

a o

ratio are greater than % T
o
e




Incorporating the results obtained for the Henderson analysis of
variance type estimator (Table 3) with the results noted above for the
MINQUE the following recommendations can be made for the one way random
effect modelé First, if the experimenter believes that the ratio of
variances, Z%-, is less than one then the Henderson Method I estimator
should be u:gd. Second, if the experimenter believes that the random
effect variance is greater than the error variance then the MINQU estima-
tor should be used incorporating a priori weights which in ratio you feel

o g
does not underestimate - -

g
e
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Table 1.

MINQUE-ya for various parameters,

a priori weights, and design configurations

2
oa
7 0.2
o
e
=3 2=5 =3 =5
r1=4 rl=2 r4=5 r. =2 r1=2 r4 2
design r2= r2=3 r_=6 r =3 r2=2 r.=12
r3=8 r3=4 r =13 r3=2
% max D 0.05 0.06 0.49 0.44
wa 0.01 1.046 1.070 1.077 1.187
— is this por- 0.10 1.032 1.051 1.059 1.142
e 02 0.50 1.005 1.010 1.013 1.030
ticn of-JE 2.00 1.005 1.013 1.020 1.039
02 5.00 1.018 1.065 1.101 1.171
e 10.00 1.027 1.109 1.168 1.263
100.00 1.038 1.176 1.266 1.378
2
oa
—-2- 0.6
a
e
£2=3 £=5 =3 =5
r1=4 r1=2 r4=5 rl=2 rl=2 r =2
design r2=6 r2=3 r =6 r2=3 r2=2 r, 12
r3=8 r3=4 r3=13 r3=2
% max D 0.05 0.06 0.49 0.44
wa 0.01 1.094 1.181 1.212 1.557
= is this por- 0.10 1.047 1.107 1.138 1.346
e 02 0.50 1.004 1.012 '1.018 1.038
shen: oF _a 2.00 1.002 1.008 1.012 1.021
o2 5.00 1.005 1.028 1.042 1.063
e 10.00 1.007 1.040 1.058 1.084
100.00 1.009 1.053 1.077 1.107




Table 2. MINQUE--Ya for various parameters,

a priori weights, and design configurations

2
O
—5 = 1.0
o]
e
=3 £2=5 2=3 £=5
r1=4 r1=2 r =5 r1=2 rl=2 r
design r2= r2=3 r5=6 r2=3 r2=2 r_=
r3=8 r_=4 r3=13 r3=2
% max D 0.05 0.06 0.49 0.44
wa 0.01 | 1.109 1.233 1.281 1.762
= is this por- 0.10 1.042 1.114 1.157 1.390
e 02 0.50 1.002 1.009 1.014 1.027
cion of _a 2.00 1.001 1.005 1.007 1.011
o2 5.00 1.002 1.014 1.021 1.031
e 10.00 1.003 1.020 1.028 1.040
100.00 1.004 1.025 1.036 1.050
2
oa
—2- = 8.0
g
e
=3 =5 =3 2=5
r1=4 r1=2 r4=5 r1=2 rl=2 r4=2
design r2= r2=3 r5=6 r2=3 r2=2 r5=12
r3=8 r3=4 r3=13 r3=2
s max D | 0.05 0.06 0.49 0.44
w 0.01 1.078 1.237 1.331 1.895
;i is this por- 0.10 | 1.004 1.025 1.038 1.069
e o2 0.50 1.000 1.001 1.001 1.001
shon s b 2.00 1.000 1.000 1.000 1.000
- o 5.00 | 1.000 1.000 1.001 1.001
e 10.00 1.000 1.001 1.001 1.001
100.00 1.000 1.001 1.001 1.001




Table 3.

Henderson Method I-—Ya for various

parameters and design configurations

£=3 2=5 2=3 2=5
design r1=4 r1=2 r4=5 tl=2 r1=2 r =2
r2=6 r2=3 r5=6 r, =3 r2=2 r =12
r3=8 r3=4 r_=13 r3=2
$ max 0.0S 0.06 0.49 0.44
°2 0.2 1.000 1.006 1.006 1.020
_a 0.6 1.012 1.011 1.019 1.029
o? 1.0 1.020 1.030 1.048 1.085
: e 8.0 1.038 1.089 1.141 1.282
:
S— e e
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Captions for Figures

Figure 1

Ya for MINQUE for various a priori weights. The short lines on

right ordinate indicate the constant value of Ya for Henderson Method

£ w3, r.w 2 r2 = 3, r3 = 13

I estimator. Design: 1

Figure 2

for MINQUE for various a priori weights. The short lines on

right ordinate indicate the constant value of (o for Henderson Method
r. = 12.

L=5,r =2, t2 3

I estimator. Design: 1
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